Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2779, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555350

RESUMO

Adipose tissue (AT) adapts to overnutrition in a complex process, wherein specialized immune cells remove and replace dysfunctional and stressed adipocytes with new fat cells. Among immune cells recruited to AT, lipid-associated macrophages (LAMs) have emerged as key players in obesity and in diseases involving lipid stress and inflammation. Here, we show that LAMs selectively express transmembrane 4 L six family member 19 (TM4SF19), a lysosomal protein that represses acidification through its interaction with Vacuolar-ATPase. Inactivation of TM4SF19 elevates lysosomal acidification and accelerates the clearance of dying/dead adipocytes in vitro and in vivo. TM4SF19 deletion reduces the LAM accumulation and increases the proportion of restorative macrophages in AT of male mice fed a high-fat diet. Importantly, male mice lacking TM4SF19 adapt to high-fat feeding through adipocyte hyperplasia, rather than hypertrophy. This adaptation significantly improves local and systemic insulin sensitivity, and energy expenditure, offering a potential avenue to combat obesity-related metabolic dysfunction.


Assuntos
Resistência à Insulina , Obesidade , Masculino , Camundongos , Animais , Obesidade/complicações , Obesidade/genética , Tecido Adiposo/metabolismo , Inflamação/metabolismo , Dieta Hiperlipídica/efeitos adversos , Lisossomos/metabolismo , Lipídeos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL
2.
J Nutr Biochem ; 111: 109173, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36228975

RESUMO

The antidiabetic effects of green tea have been demonstrated in clinical trials and epidemiological studies. This study investigated the antidiabetic effects of green tea extract (GTE) and its underlying molecular mechanisms using a leptin receptor-deficient db/db mouse model (Leprdb/db). Treatment with GTE for 2 weeks improved glucose tolerance and insulin sensitivity in Leprdb/db mice. In addition, GTE treatment reduced the body weight and adiposity of Leprdb/db mice. Furthermore, GTE treatment reduced pro-inflammatory gene expression, including nuclear factor kappa B (NF-κB) in white adipose tissue (WAT), and also reduced dipeptidyl peptidase-4 (DPP4) expression levels in WAT as well as in the serum. The promoter region of Dpp4 contains the NF-κB binding site, and DPP4 was found to be a direct target of NF-κB. Consistently, in vitro treatment of cells with GTE or its main constituent epigallocatechin gallate reduced lipopolysaccharide-induced NF-κB/DPP4 expression in 3T3-L1 adipocytes and RAW264.7 cells. Overall, our data demonstrated that GTE exerts an anti-diabetic effect by regulating the expression levels of NF-κB and DPP4 in WAT.


Assuntos
Dipeptidil Peptidase 4 , Hipoglicemiantes , Camundongos , Animais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/metabolismo , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , NF-kappa B/metabolismo , Extratos Vegetais/uso terapêutico , Tecido Adiposo/metabolismo , Chá/química
3.
Nat Commun ; 13(1): 4084, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835749

RESUMO

Dysregulation of adipose tissue plasmalogen metabolism is associated with obesity-related metabolic diseases. We report that feeding mice a high-fat diet reduces adipose tissue lysoplasmalogen levels and increases transmembrane protein 86 A (TMEM86A), a putative lysoplasmalogenase. Untargeted lipidomic analysis demonstrates that adipocyte-specific TMEM86A-knockout (AKO) increases lysoplasmalogen content in adipose tissue, including plasmenyl lysophosphatidylethanolamine 18:0 (LPE P-18:0). Surprisingly, TMEM86A AKO increases protein kinase A signalling pathways owing to inhibition of phosphodiesterase 3B and elevation of cyclic adenosine monophosphate. TMEM86A AKO upregulates mitochondrial oxidative metabolism, elevates energy expenditure, and protects mice from metabolic dysfunction induced by high-fat feeding. Importantly, the effects of TMEM86A AKO are largely reproduced in vitro and in vivo by LPE P-18:0 supplementation. LPE P-18:0 levels are significantly lower in adipose tissue of human patients with obesity, suggesting that TMEM86A inhibition or lysoplasmalogen supplementation might be therapeutic approaches for preventing or treating obesity-related metabolic diseases.


Assuntos
Plasmalogênios , Termogênese , Adipócitos/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/fisiologia , Homeostase , Humanos , Hidrolases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Plasmalogênios/metabolismo , Termogênese/fisiologia
4.
Mol Metab ; 39: 101005, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32344065

RESUMO

OBJECTIVE: Beclin1 is a core molecule of the macroautophagy machinery. Although dysregulation of macroautophagy is known to be involved in metabolic disorders, the function of Beclin1 in adipocyte metabolism has not been investigated. In the present study, we aimed to study the role of Beclin1 in lipolysis and mitochondrial homeostasis of adipocytes. METHODS: Autophagic flux during lipolysis was examined in adipocytes cultured in vitro and in the adipose tissue of mice. Adipocyte-specific Beclin1 knockout (KO) mice were used to investigate the activities of Beclin1 in adipose tissues. RESULTS: cAMP/PKA signaling increased the autophagic flux in adipocytes differentiated from C3H10T1/2 cells. In vivo autophagic flux was higher in the brown adipose tissue (BAT) than that in the white adipose tissue and was further increased by the ß3 adrenergic receptor agonist CL316243. In addition, surgical denervation of BAT greatly reduced autophagic flux, indicating that sympathetic nerve activity is a major regulator of tissue autophagy. Adipocyte-specific KO of Beclin1 led to a hypertrophic enlargement of lipid droplets in BAT and impaired CL316243-induced lipolysis/lipid mobilization and energy expenditure. While short-term effects of Beclin1 deletion were characterized by an increase in mitochondrial proteins, long-term Beclin1 deletion led to severe disruption of autophagy, resulting in mitochondrial loss, and dramatically reduced the expression of genes involved in lipid metabolism. Consequently, adipose tissue underwent increased activation of cell death signaling pathways, macrophage recruitment, and inflammation, particularly in BAT. CONCLUSIONS: The present study demonstrates the critical roles of Beclin1 in the maintenance of lipid metabolism and mitochondrial homeostasis in adipose tissues.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Proteína Beclina-1/genética , Deleção de Genes , Lipólise/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Adipócitos/ultraestrutura , Tecido Adiposo Marrom/metabolismo , Animais , Autofagia/genética , Proteína Beclina-1/metabolismo , Linhagem Celular , AMP Cíclico , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Variações do Número de Cópias de DNA , Imunidade , Metabolismo dos Lipídeos , Camundongos , Camundongos Knockout , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Receptores Adrenérgicos beta 3/metabolismo , Transdução de Sinais , Termogênese/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA